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Abstract. We have investigated the weakly non-linear quantum transport properties of a two-
dimensional quantum conductor. We have developed a numerical scheme which is very general
for this purpose. The second-order non-linear conductance is computed for the first time for a
truly two-dimensional structure by explicitly evaluating the various partial densities of states,
the sensitivity and the characteristic potential. Interesting spatial structures of these quantities
are revealed. We present detailed results concerning the crossover behaviour of the second-order
non-linear conductance, occurring when the conductor changes from geometrically symmetrical
to asymmetrical. Other issues of interest such as the gauge invariance are also discussed.

1. Introduction

Non-linear phenomena in electric conduction play the most important role in many electronic
device applications, the devices ranging from single units such as a diode or a transistor to
entire circuits. For extremely small systems with mesoscopic or atomic length scales, such
as those which can now be routinely fabricated using nanotechnology, quantum transport
dominates the conduction. While we now have a very good understanding of linear quantum
transport phenomena in nanosystems where quantum coherence plays a vital role, the non-
linear quantum transport properties of mesoscopic conductors have received less attention.
However, several important research results have been reported in recent years [1–5]. On
the experimental side, Taboryskiet al [5] have reported observations of non-linear and
asymmetric conductance oscillations in quantum point contacts at small bias voltages. They
found that the non-Ohmic and asymmetric behaviour causes a rectified DC signal as the
response to an applied AC current. On the theoretical side, several directions have been
explored. Wingreenet al [3] have presented a general formulation for dealing with the
situation of a non-linear and time-dependent current going through a small interacting region
where electron energies can be changed by time-dependent voltages. de Vegvar [4] has
studied the low-frequency second-harmonic transport response of multiprobe mesoscopic
conductors using perturbation theory in the framework of the Kubo formula and found that
the low-frequency second-harmonic current is a non-Fermi-surface quantity. At the same
time, Büttiker and co-workers [6, 1, 7] have advanced a current-conserving theory for the
frequency-dependent transport. This theory can be applied in discussing the non-linear
behaviour of mesoscopic samples. It has been recognized [8] that in non-linear coherent
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quantum transport, it is essential to consider the internal self-consistent potential in order to
have the theory satisfy the gauge-invariant condition. This is a fundamental condition, which
requires that none of the physical properties predicted by a theory can change if there is a
global voltage shift. Recently, Christen and Büttiker [8] have investigated the rectification
coefficient of a quantum point contact and the non-linear current–voltage characteristic of
a resonant level in a double-barrier structure by assuming the scattering matrix to be of
Breit–Wigner form.

Clearly it is important and useful to investigate non-linear quantum transport phenomena
in coherent quantum conductors further and numerically implement the existing theory of
non-linear conductance. In particular, detailed predictions of non-linear conductance of
two-dimensional (2D) systems warrant making because such systems can now be fabricated
in many laboratories. Unfortunately, due to various technical difficulties, especially the
difficulty of evaluating a quantity called thesensitivity(see below), so far the application
of Büttiker’s non-linear theory [8] has largely been limited to quasi-1D systems. The non-
linear conductance for a 2D conductor, on the other hand, has been investigated for a
very special and exactly solvable model, namely that of a quasi-1D ballistic wire with a
δ-function impurity confined inside [9]. Since it is exactly solvable, the sensitivity can be
computed in a closed form, thereby overcoming the technical difficulties associated with the
theoretical formalism. To the best of our knowledge, this is the only explicit computation
of the weakly non-linear conductance from the gauge-invariant AC transport theory that has
been carried out for a 2D system, where mode mixing is the most important characteristic.
However, we note that in order to apply the theoretical formalism to a wide range of 2D
mesoscopic conductors, a more general numerical method must be developed and various
physical issues clarified. The purpose of this article is to report our development of such a
numerical method, and to investigate the weakly non-linear transport properties of a truly
2D system with mode-mixing characteristics.

Figure 1. A schematic view of an asymmetric cavity (the shaded area) embedded in a quantum
wire.

As we have noted from the previous investigation of the exactly solvable model [9],
for a geometrically symmetric system the second-order non-linear conductanceG111 must
be zero from a general symmetry argument. Hence the non-linear effect, i.e. a non-zero
Gαβγ , obtained in reference [9] is a delicate effect of the asymmetric scattering boundary
[10]. Such an asymmetry is brought about when theδ-function scatterer is not located at
the centre of the scattering volume [9]. Very interesting and physically revealing behaviour
of the local current response (the sensitivity) has already been found. In this work, on
the other hand, we shall focus on a much more general situation, by investigating the 2D
conductor depicted in figure 1 which is a quasi-1D quantum wire with a side stub.

An important system parameter to be specified for non-linear analysis is the scattering
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volume; for the conductor of figure 1 it is defined by the shaded area. By ‘scattering
volume’ we specifically mean the space in which electron–electron (ee) interactions will
be considered, i.e. the self-consistent internal potential response will be calculated for this
volume. In principle, one needs to consider the limitL → ∞ (see figure 1); however,
in numerical analysis that limit is achieved whenL is sufficiently large that the scattering
volume boundary is far away from the side-stub region (see below and the discussion in
section 4). The two leads, of widthW , are assumed to extend far away from the scattering
volume. The shape of the side stub is controlled by the parameterH as shown in figure 1,
and hence various different 2D systems can be generated by varyingH . WhenH = 2W , the
scattering volume is geometrically symmetric, and hence the non-linear conductanceGαβγ

must be zero. Similarly, whenH = W andL→∞, the system is symmetric, and thusGαβγ

vanishes. For other values ofH betweenW and 2W , the scattering volume is intrinsically
asymmetric where a finiteGαβγ is expected. By varyingH , we shall study the crossover
behaviour ofG111 between the symmetric and asymmetric situations. Finally, a point of
academic interest arises forH = W but with a finiteL: in this case the scattering volume
is geometrically asymmetric (see figure 1) but this asymmetry is only due to theasymmetric
location of the scattering volume boundary, which is artificially chosen. Nevertheless, a
small but finiteG111 is expected with a behaviour similar to that discussed in reference [9].

Our results show that the external (the internal) response of the second-order non-linear
conductance changes sign from negative (positive) to positive (negative) near a quantum
resonant point. The cancellation of the external and internal responses results in a much
smaller second-order non-linear conductanceG111, i.e., G111 is one order of magnitude
smaller than the external or internal response. This is an important result and it indicates that
theories in which the internal response is not taken into consideration self-consistently will
not only violate gauge invariance, but also give incorrect numerical results. The behaviour
of G111 is non-monotonic when the parameterH is varied in the rangeW 6 H 6 2W : this
is becauseG111 is very small atH = W as it is solely due to the asymmetric scattering
boundary, it increases asH is increased, and it is zero atH = 2W . Another result of
our analysis concerns the gauge invariant condition

∑
γ Gαβγ = 0. It turns out that for

systems with a finite scattering volume such as those in any numerical calculations, if the
global partial density of states (GPDOS) is computed from theenergyderivatives of the
scattering matrix, then it is the case [9] that a correction term must be added to satisfy
the gauge-invariant condition. For the exactly solvable model studied in our previous work
[9], this correction term has been derived analytically. We shall examine this effect for the
conductor studied here.

The paper is organized as follows. In the next section we shall briefly review the
gauge-invariant theory for non-linear transport developed by Büttiker [1]. The method of
calculating various quantities needed for studying non-linear conductance and our results
are presented in sections 3 and 4. The last section serves as a brief summary.

2. The formalism

The gauge-invariant formalism of non-linear transport has been developed and clearly
discussed in reference [8] and we refer the interested reader to the original work. In
this section, we shall outline the main steps of the application of this formalism for our
calculation. In the weakly non-linear regime, the current of a two-probe conductor is given
by

I1 = G11(V1− V2)+G111(V1− V2)
2 (1)
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whereG11 is the usual linear conductance andG111 is the second-order non-linear cond-
uctance. As shown in reference [8],Gαβγ consists of two terms:

Gαβγ = Ge
αβγ +Gi

αβγ (2)

where the external contribution can be obtained using the free-electron scattering theory by
evaluating the energy derivatives of the scattering matrix:

Ge
αβγ =

e2

h

∫
dE (−∂Ef )e ∂EAαβ δβγ (3)

where

Aαβ(E, {Vγ }) = Tr[1αδαβ − s†αβ(E, {Vγ })sαβ(E, {Vγ })] (4)

are the screened (negative) transmission functions which are expressed in terms of the
scattering matrixsαβ . The internal contribution, on the other hand, is much more difficult
to obtain because it depends on the potential derivatives of the scattering matrix:

Gi
αβγ =

e2

h

∫
dE (−∂Ef )(∂Vγ Aαβ + ∂VβAαγ ). (5)

This is difficult to evaluate because when the voltage of a probeVγ changes, the entire
potential landscape of the scattering volume will change accordingly through the electron–
electron interactions. Hence the internal contribution to the non-linear conductance can
be obtained only after an interacting electron problem has been solved [8]. This is
a very difficult task and so far has not been successfully implemented in a numerical
scheme. However, if we can use the Thomas–Fermi linear screening model, which is more
appropriate for metallic conductors, the internal contribution can be computed through the
evaluation of quantities called the sensitivity and the characteristic potential [8]. It can be
shown [8] that the potential derivative of the transmission function is given as

∂Vγ Aαβ = 4π
∫

d3r ηαβ(r)uγ (r) (6)

where

ηαβ(r) = 1

4π

δAαβ

δU(r)
= − 1

4π
Tr

(
s†αβ

δsαβ
δU(r)

+ sαβ
δs†αβ
δU(r)

)
(7)

is called thesensitivity [12], which measures the local electric current response to an
external perturbation.uγ (r) is the characteristic potential, which measures the variation
of the potential landscape of the scattering volume due to the perturbation [1]. Within the
Thomas–Fermi screening model, it is given by [7, 11]

uγ (r) = dn(r, γ )

dE

/
dn(r)

dE
.

Here dn(r, γ )/dE and dn(r)/dE are local partial densities of states which will be discussed
in the next section.

On the basis of the weakly non-linear conductance formalism summarized above, several
observations are in order. First, if one is applying this formalism, a crucial step is
the evaluation of the sensitivityηαβ , which depends on the functional derivative of the
scattering matrix with respect to the local potential variation. The latter is caused by
the external perturbation, i.e. the change of the electrochemical potential at a lead. We
are aware of two ways of calculating the sensitivity [12]. The first is to evaluateδsαβ/δU
directly by introducing aδ-function of infinitesimal strengthδU inside the scattering region.
Alternatively, one can calculate it using the retarded Green’s function. For a 2D system,
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in general the Green’s function cannot be obtained explicitly except in very special cases;
hence we shall use the first method and directly compute the sensitivity. As a second
observation which is physically important [10], we can discuss the general behaviour of
the non-linear conductanceG111. From equation (1), for a symmetric scattering volume
with scattering potentialU(x, y) = U(−x, y) where x is the propagation direction, we
must obtain−I1 if V1 andV2 are interchanged. Hence we conclude that for a symmetric
scattering volume there are no quadratic terms, i.e.,G111= 0. On the other hand, in general
G111 6= 0 for geometrically asymmetrical systems. Finally, due to the current conservation
and the gauge-invariant condition—namely that the entire physics is as a whole unaffected
by a global voltage shift—it is not difficult to prove [1, 8, 13] that∑

α

Gαβγ =
∑
β

Gαβγ =
∑
γ

Gαβγ = 0. (8)

Our results will allow a direct confirmation of this equation.

3. The numerical method

There are several ways to solve the scattering matrix of 2D ballistic conductors, such as
the mode-matching method [14], the recursive Green’s function method [15–18] and the
finite-element method [18, 19]. However, we found that none of these methods is very easy
to apply here, because we need not only the scattering matrix, but also the sensitivityηαβ .
In view of this, we shall discuss in this section our numerical procedure for findingηαβ
using the scattering matrix method.

In particular, we construct a global scattering matrix using the mode-matching method
of reference [20]. If a scattering volume is not uniform along its longitudinal direction, we
divide it into a number of uniform sections; e.g., the asymmetric cavity shown in figure 1 can
be divided into four uniform sections. The scattering matrix associated with thenth section
Sn is the composition of two individual scattering matricesSfn andSin, i.e., Sn = Sfn ⊗Sin
where⊗ is the operator which denotes the composition of two scattering matrices [21].
Here Sfn describes the free propagation from the left-hand end of thenth section to its
right-hand end. The scattering process at the interface between two adjacent sections (the
nth and (n + 1)th sections) is described bySin. Care must be taken when matching the
wavefunctions of two sections with different widths at the section boundary [20]. If the
width of thenth sectionWn is not greater thanWn+1, we have

Sin =
[ −CT I

Kn CKn+1

]−1 [ CT −I
Kn CKn+1

]
(9)

where Kn is a diagonal matrix with diagonal elementskmn , wherekmn is the longitudinal
wavenumber for themth mode, andI is a unit matrix. C is a matrix which denotes the
coupling between the transverse modes in the two sections and its elements are given by
Cij = 〈φin|φjn+1〉 whereφin is theith transverse mode in thenth section.CT is the transpose
of the matrixC. On the other hand, ifWn > Wn+1, we have

Sin =
[ −I C

CTKn Kn+1

]−1 [ I −C
CTKn Kn+1

]
. (10)

Once the scattering matrices for each of the sections are is known, the global scattering
matrix can be easily constructed by the composition of all of the individual scattering
matrices:

S = S1⊗ S2⊗ . . .⊗ SM−1 (11)
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whereM is the total number of sections.
The above procedures can easily be modified to compute the sensitivityηαβ(r). For this

purpose, we shall make use of aδ-function impurity to calculate the functional derivatives
of the scattering matricesδsαβ/δU(r). This is achieved as follows. We put aδ-function
impurity with infinitesimal strengthγ , V (r) = γ δ(r − r0), at arbitrary positionsr = r0

in the scattering volume. We then calculate the scattering matrixsαβ as a function ofγ .
Finally we use a five-point numerical derivative to evaluateδsαβ/δU(r) ≡ ∂sαβ/∂γ |γ=0.
With this result we can obtain the sensitivity from equation (7).

The scattering matrix can still be obtained using the approach discussed above even
including theδ-function impurity [21, 22]. Suppose theδ-function impurity is located in
the nth section at positionr0 = (x0, y0), wherex0 andy0 are the distances from the left-
hand and bottom boundaries of the section, respectively. The scattering matrix associated
with this section is then given by

Sn = Sfn (x0)⊗ Sδn ⊗ Sfn (Ln − x0)⊗ Sin (12)

where Sδn describes the scattering process associated with theδ-function impurity and is
given by [22]

Sδn =
[ −I I

iKn − Γ iKn

]−1 [ I −I
iKn + Γ iKn

]
(13)

where the matrixΓ describes the mode-mixing effect due to theδ-function impurity and its
matrix elements are given by0pq = 2γ sin(pπy0/Wn) sin(qπy0/Wn)/Wn withWn being the
width of the section. With theδ-function included this way, we can again apply equation
(11) to compute the scattering matrixs = s(γ ) and complete the numerical derivatives
discussed in the last paragraph.

To end this section, we briefly mention two other points. First, the characteristic potential
is evaluated using the scattering wavefunction which can be calculated in two ways, directly
or indirectly. One can directly compute the wavefunction using the mode-matching method
[14] or the finite-element method [18, 19]. Or one can compute the wavefunction (|9|2)
indirectly by computing the local partial DOS, called the emissivity, defined as [13]

dn(α, r)

dE
= − 1

4π i

∑
β

Tr

(
s†αβ

δsαβ
δeU(r)

− sαβ
δs†αβ
δeU(r)

)
. (14)

In the absence of a magnetic field, the micro-reversibility of the scattering matrix implies
that

dn(α, r)

dE
= dn(r, α)

dE
(15)

where dn(r, γ )/dE is the injectivity and is given by [13] the scattering wavefunctions:

dn(r, γ )

dE
=
∑
n

|9γn(r)|2
hvγn

(16)

where vγn is the electron velocity for the propagating channel labelledn. We will use
equations (16), (14) and (15) to compute the wavefunction|9|2, since we have to compute
the scattering matrix orδs/δU(r) anyway for the sensitivity. Second, the energy derivatives
of the transmission function, which determines the external response contribution to the
second-order non-linear conductance, are evaluated using a five-point numerical difference
method.
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Figure 2. The sensitivity η11 at three different positions,(x, y) = {(0.5W, 0.5W),
(0.5W, 1.25W), (1.25, 0.625W)}, as a function of the normalized electron momentumkFW/π
for H = 1.25W andL = W . For each curve the energy scan contains 4000 points; this large
number of points was used in order to reveal the fine resonance pattern.

4. Results

As a first result, we plot in figure 2 the sensitivityη11(r) at three different positions inside the
scattering volume,r1 = (0.5W, 0.5W), r2 = (0.5W, 1.25W) andr3 = (1.25W, 0.625W),
as a function of the normalized electron momentumkFW/π wherekF is the electron Fermi
wavenumber. These results are for an asymmetric system (see figure 1) with the parameter
H = 1.25W . As discussed in section 2,ηαβ appears naturally in the theoretical formalism,
and it essentially describes the local (internal) electric current response of the scattering
problem when there is a small local potential change. It is related to the real part of
the diagonal elements of the scattering Green’s function [12]. From figure 2, we see that
different positions inside the scattering volume have quite different internal responses in
terms of the peak heights of the apparent resonance behaviour. On the other hand, the peak
positions occur at the same electron energies, given bykFW/π , for η11 at all three positions.
We have checked (see below and figure 5(b), later) that the peak positions also coincide
with those of the conductance. Hence we may conclude that the local current response
can exhibit sharp changes, from positive values to negative values, across the energy of
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a resonance which also mediates a resonance transmission. For the two positionsr1 and
r2 which are located in the left-hand part of the cavity, the shapes of the sensitivities are
more similar to each other. This is to be compared with the shape of the sensitivity of the
positionr3 which is located in the right-hand part of the cavity. The differences are evident
from the three curves of figure 2.

Figure 3. Three-dimensional views of the sensitivityη11 for H = 1.25W andL = W at two
different values of the electron momentum,kFW/π = 1.715 andkFW/π = 1.795.

To get a more intuitive picture of the spatial dependence of the sensitivity, in figure 3
we plot η11(r) for the entire scattering volume for two different values of the electron
momentum (H = 1.25W ). The first case is forkFW/π = 1.715, which is off resonance,
while the second is forkFW/π = 1.795, which is on resonance. From the lower panel
of figure 3 which corresponds to the resonant energy, the behaviour ofη11 is seen to be
reminiscent of a standing wave, which is in accordance with our usual picture of a quantum
resonance. The positionsr1 andr2 of figure 2 are located at peaks of the sensitivity profile
while r3 is in a valley. This explains why in figure 2 we observe the large resonant peaks
at r1 andr2 but not atr3. For the off-resonance case, the upper panel of figure 3 shows
less regular patterns forη11. Hence the local current response can behave regularly or less
regularly according to whether the electron Fermi energy is on or off quantum resonance
for the scattering cavity. In comparison, for both 1D and 2D scattering problems involving
a δ-potential barrier, the sensitivity has been derived analytically in references [12] and [9].
There,η11 shows strong regular spatial oscillations.
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Figure 4. Three-dimensional views of the sensitivityη11 and the characteristic potential 2u1−1
for a symmetric T-shaped cavity atkFW/π = 1.325, forH = W andL = W .

When the geometry parameterH = W , the conductor becomes a T-shaped junction.
The upper panel of figure 4 showsη11 for this situation atkFW/π = 1.325. The lower
panel of figure 4 plots the characteristic potential 2u1(r) − 1 for this case. The quantity
2u1(r)−1 is interesting because it can easily be shown [8], using equations (2), (3), (5) and
applying the gauge-invariant condition (8), that the non-linear conductance can be rewritten
as

Gαβγ = 4π
e

h

∫
dE (−∂Ef )

∫
d3r (ηαβuγ (r)+ ηαγ uβ(r)− ηαβδγβ). (17)

Hence the quantity 2u1(r)−1 appears naturally in this form ofG111. From figure 4 it is clear
thatη11 is symmetric and 2u1−1 is anti-symmetric along thex-axis. As a result,G111 will
be zero for this T-shaped junction if the scattering volume is symmetric, due to the spatial
integration of equation (17). To systematically investigate the behaviour ofG111 as the
conductor shape changes from symmetric to asymmetric, we have calculated this quantity
for several values of the geometric parameterH at zero temperature:H = W , 1.25W ,
1.5W and 1.75W (see figure 1). In figures 5(a)–5(d) we have plotted the DC conductance
G11, the external and internal responses of the second-order non-linear conductance,Ge

111
[23], Gi

111, andG111 as a function of the normalized electron momentumkFW/π for these
configurations. Since the sensitivity exhibits strong position dependence, we have used the
Gaussian quadrature method in the integration of equation (17) and a careful convergence
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(a)

Figure 5. The DC conductancesG11 and the leading-order non-linear termsG111 as a function
of the normalized electron momentumkFW/π ; solid lines are forGe111 and dotted lines are for
Gi111. (a)H = W , (b) H = 1.25W , (c) H = 1.5W , (d) H = 1.75W . HereE1 is the threshold
of the first subband, defined asE1 = h̄2π2/(2mW2), andL = W .

check has been made to achieve sufficient accuracy. Several interesting features have
been observed. First of all, the external (the internal) response of the second-order non-
linear conductance changes sign from negative (positive) to positive (negative) near the
resonant point. This behaviour is similar to that of one-dimensional asymmetric double-
barrier resonant tunnelling [8]. In that case,G111 = (e3/h)(dT/dE)(02 − 01)/0, where
T is the transmission coefficient,0i is the decay width of each barrier and0 = 01 + 02.
Because of the presence of the term dT/dE, G111 changes sign across the resonant point
and hence can be negative. The cancellation of the external and internal responses results
in a much smallerG111: one order of magnitude smaller than the internal or external
contribution alone. Secondly, forH = W the asymmetry of the scattering volume only
arises from the location of the scattering volume boundary, which we are free to select, and
G111 has the smallest values for allH < 2W studied. ForW < H < 2W , the conductor
is intrinsically asymmetric and theG111 are larger. Also, the resonance behaviour ofG111

becomes substantially sharper asH is increased. WhileG111 increases asH increases
from H = W , it eventually starts to decrease afterH > 1.5W . This is clearly seen from
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(b)

Figure 5. (Continued)

figure 5(d) for whichH = 1.75W . This is because for largerH the system approaches
being a symmetric conductor atH = 2W , for whichG111= 0 as discussed above.

So far, as noted in reference [23], we have computed the external contributionGe
111 of

equation (3) using a procedure which employs the gauge-invariant condition. However, if
we directly use the right-hand side of equation (3) to computeGe

111, the result will not be
accurate because the scattering volume is finite. In particular, as found from a previous
study [9] for a symmetric system,G111 will be non-zero if calculated using the right-hand
side of equation (3). In terms of the gauge-invariant condition, this will lead to a violation,
i.e. G111+G112 6= 0. While such an error is not relevant if the scattering volume is very
large, for our numerical calculations it will lead to incorrect conclusions since the scattering
volume is always finite. Hence, in order to use the right-hand side of equation (3) to
computeGe

111, a correction term is needed to preserve the gauge invariance.
For a quasi-1D wire with aδ-function impurity, this correction term has been derived

[9] analytically. For that situation, the correction,C, consists of two terms [9]:

C = |s12|2
k2

1

Re(s11)+ Re

(∑
n=2

b1|bn|2
k1kn

eikn(x2−x1)

)
(18)



5346 Wei-Dong Sheng et al

(c)

Figure 5. (Continued)

wherekn is the longitudinal momentum for thenth mode withk2
n = k2

F − (nπ/W)2 and
E = h̄2k2

F /2m, x1 and x2 are the coordinates for the scattering boundaries, andbn is the
reflection scattering amplitude. Clearly, the first term is oscillating as the linear size of
the scattering volume increases (due tos11) and it is only relevant near the edge of the
first propagation threshold; the second term is exponentially decaying to zero as the size
of the volume increases, and it comes solely from mode mixing and is contributed by
the evanescent modes. Although this form of the correction term was derived for another
system, it is nevertheless interesting to compare this formula for the conductor studied here.

In figure 6 we plot the correction term given by equation (18) together withG111+G112

which was computed using the right-hand side of equation (3), for the case whereH = W .
Equation (18) was evaluated using the scattering matrix elements obtained from our
numerical calculation, and the system size(x2 − x1) was specified as the length of our
scattering volume 2L + 2W (see figure 1). For this conductor withH = W , we expect a
good comparison with equation (18) which was derived for aδ-function scatterer inside a
wire, because for both systems the geometric asymmetry is solely due to the position of
the scattering volume boundary. Other than that, these systems are actuallysymmetricwith
respect to the scattering potential. Indeed, figure 6 clearly shows that there is essentially no
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(d)

Figure 5. (Continued)

difference between equation (18) and our numerical data when the scattering volume is large
(L = 4W ). On the other hand, for a conductor withH = 1.5W which has an intrinsically
asymmetric scattering volume, the comparison is qualitative as shown in figure 7. However,
the trends of the two curves are still similar. We may thus conclude that for the gauge-
invariant condition, the correction term for the external contribution expression, equation (3),
has a form of the same nature as that of equation (18) above.

5. Summary

In this work we have developed a numerical technique based on a scattering matrix to
compute weakly non-linear conductance. This technique is particularly useful for conductors
whose scattering volume can be naturally divided into several regions. The most difficult
step is the evaluation of the local electric current response, namely the sensitivity. We
have reported on how to obtain this quantity numerically; thus further investigations of the
interesting non-linear conductance problem can be carried out using our numerical method.
We have found that the sensitivity behaves differently when the transport energy is on and
off resonance. The former leads to standing-wave-type spatial dependence, while the latter
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Figure 6. G111+G112 (solid line) and the correction term calculated according to equation (18)
(dotted line) versus momentum for the T-shaped cavity (H = W ). Upper panel:L = 0. Lower
panel:L = 4W .

leads to a less regular behaviour. In all cases, the sensitivity shows a spatially oscillating
pattern, which is similar to those known from exact calculations for 1D models.

The non-linear conductance can be non-zero only for geometrically asymmetric systems.
The asymmetry can be introduced in two ways. The first is through the intrinsically
asymmetrical shape of a conductor, such as that of figure 1 withW < H < 2W . The
other, which is a trivial asymmetry, is introduced through the asymmetrical location of the
scattering volume boundary, e.g. the case whereH = W . We discovered that the intrinsic
asymmetry leads to much larger non-linear conductance than the other case. Furthermore,
for a symmetrical scattering junction but with asymmetrical location of the boundary (the
H = W case), for large sizeL the behaviour of the gauge-invariant condition agrees almost
perfectly with equation (18) which was derived for a completely different system but also
with the asymmetry introduced by means of the location of the scattering volume boundary
only. On the other hand, such an agreement is less perfect for intrinsically asymmetrical
systems. Hence we may conclude that the non-linear conductance behaves in quite different
manners according to how the asymmetry is introduced.

The sign of the non-linear conductance can be positive or negative. Very sharp variations
of this quantity are discovered at quantum resonances for the conductor studied here, where
such resonances are marked by sharp reductions of the linear conductanceG11. Hence near
a resonance, the electric current may actually decrease for an increasing voltage difference
according to equation (1), sinceG111 is negative. Such a behaviour is precisely the expected
non-linear conduction characteristic, and up to the second order in the voltage difference



Non-linear conductance of a 2D mesoscopic conductor 5349

Figure 7. G111+G112 (solid line) and the correction term calculated according to equation (18)
(dotted line) versus momentum for an asymmetric structure (H = 1.5W ). Upper panel:L = 0.
Lower panel:L = 4W .

our results can provide a prediction. Clearly, as the voltage difference becomes large,
higher-order conductances must be included in order to obtain a meaningful prediction of
the non-linearI–V curve. This is very important if one is to make quantitative com-
parisons with experimental data on the measuredI–V characteristics of various 2D and
3D mesoscopic conductors. Because it is very difficult to perform gauge-invariant self-
consistent calculations for non-linear transport for systems beyond 1D, our numerical method
presented here gives a useful first step toward that goal.
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[7] Büttiker M, Thomas H and Prêtre A 1994Z. Phys.B 94 133
[8] Christen T and B̈uttiker M 1996Europhys. Lett.35 523
[9] Wang J, Zheng Q R and Guo H 1997Phys. Rev.B 55 9763

[10] We thank Professor M B̈uttiker for pointing this out to us:
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[13] Büttiker M and Christen T 1996Quantum Transport in Semiconductor Submicron Structuresed B Kramer

(Dordrecht: Kluwer)
[14] Schult R L, Ravenhall D G and Wyld H W 1989Phys. Rev.B 39 5476
[15] Lee P A and Fisher D S 1981Phys. Rev. Lett.47 882
[16] Baranger H U, DiVincenzo D P, Jalabert R A and Stone A D 1991Phys. Rev.B 44 10 637
[17] McLennan M J, Lee Y and Datta S 1991Phys. Rev.B 43 13 846
[18] Lent C S and Kirkner D J 1990J. Appl. Phys.67 6353
[19] Wang Y J, Wang J and Guo H 1994Phys. Rev.B 49 1928

Leng M and Lent C S 1994J. Appl. Phys.76 2240
[20] Sheng W D 1997J. Phys.: Condens. Matter9 8369
[21] Tamura H and Ando T 1991Phys. Rev.B 44 1792
[22] Takagaki Y and Ferry D K 1992 Phys. Rev.B 45 6716
[23] Ge111 was computed for figure 5 by replacing the energy derivatives of equation (3) with a potential derivative

using the gauge-invariant condition. This procedure can be justified using the original formula given in
references [13, 24] and numerically verified in reference [9].

[24] Leavens C R and Aers G C 1988Solid State Commun.67 1135
Leavens C R and Aers G C 1989Phys. Rev.B 39 1202


